Statistical ensembles and logarithmic corrections to black hole entropy

Author:

Ghosh AritraORCID

Abstract

Abstract In this paper, we consider general statistical ensembles and compute logarithmic corrections to the microcanonical entropy resulting due to thermodynamic fluctuations which are controlled by the boundary conditions, i.e. due to choice of ensemble. The framework is applied to the case of non-extremal black holes to give certain logarithmic corrections to the Bekenstein–Hawking entropy. We argue that within the framework of black hole chemistry, where the cosmological constant is identified with bulk pressure, the isoenthalpic-isobaric entropy rather than microcanonical entropy carries a more natural and consistent thermodynamic interpretation as black hole entropy. Logarithmic corrections to both microcanonical and isoenthalpic-isobaric entropies of black holes are computed, and we show that the latter set of corrections in black hole chemistry are of the same form as corrections to the microcanonical entropy in theories where the cosmological constant is not interpreted as a thermodynamic pressure. Finally, we compute logarithmic corrections to entropy in the framework of holographic black hole chemistry. We emphasize upon the choice of statistical ensemble, both in the bulk and on the boundary, in order to have a consistent comparison between them. The corrections studied in this paper are distinct from those obtained from Euclidean quantum gravity.

Funder

Ministry of Education, India

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference88 articles.

1. Black holes and entropy;Bekenstein;Phys. Rev. D,1973

2. Generalized second law of thermodynamics in black hole physics;Bekenstein;Phys. Rev. D,1974

3. Particle creation by black holes;Hawking;Commun. Math. Phys.,1975

4. Black holes and thermodynamics;Hawking;Phys. Rev. D,1976

5. Microscopic origin of the Bekenstein-Hawking entropy;Strominger;Phys. Lett. B,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3