EBWeyl: a code to invariantly characterize numerical spacetimes

Author:

Munoz Robyn LORCID,Bruni MarcoORCID

Abstract

Abstract Relativistic cosmology can be formulated covariantly, but in dealing with numerical relativity simulations a gauge choice is necessary. Although observables should be gauge-invariant, simulations do not necessarily focus on their computations, while it is useful to extract results invariantly. To this end, in order to invariantly characterize spacetimes resulting from cosmological simulations, we present two different methodologies to compute the electric and magnetic parts of the Weyl tensor, E α β and B α β , from which we construct scalar invariants and the Weyl scalars. The first method is geometrical, computing these tensors in full from the metric, and the second uses the 3 + 1 slicing formulation. We developed a code for each method and tested them on five analytic metrics, for which we derived E α β and B α β and the various scalars constructed from them with computer algebra software. We find excellent agreement between the analytic and numerical results. The slicing code outperforms the geometrical code for computational convenience and accuracy; on this basis we make it publicly available in github with the name EBWeyl. We emphasize that this post-processing code is applicable to any numerical spacetime in any gauge.

Funder

Science and Technology Facilities Council

University of Portsmouth

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3