Non-oscillating power spectra in loop quantum cosmology

Author:

Navascués Beatriz ElizagaORCID,Mena Marugán Guillermo AORCID,Prado Santiago

Abstract

Abstract We characterize in an analytical way the general conditions that a choice of vacuum state for the cosmological perturbations must satisfy to lead to a power spectrum with no scale-dependent oscillations over time. In particular, we pay special attention to the case of cosmological backgrounds governed by effective loop quantum cosmology and in which the Einsteinian branch after the bounce suffers a pre-inflationary period of decelerated expansion. This is the case more often studied in the literature because of the physical interest of the resulting predictions. In this context, we argue that non-oscillating power spectra are optimal to gain observational access to those regimes near the bounce where loop quantum cosmology effects are non-negligible. In addition, we show that non-oscillatory spectra can indeed be consistently obtained when the evolution of the perturbations is ruled by the hyperbolic equations derived in the hybrid loop quantization approach. Moreover, in the ultraviolet regime of short wavelength scales we prove that there exists a unique asymptotic expansion of the power spectrum that displays no scale-dependent oscillations over time. This expansion would pick out the natural Poincaré and Bunch–Davies vacua in Minkowski and de Sitter spacetimes, respectively, and provides an appealing candidate for the choice of a vacuum for the perturbations in loop quantum cosmology based on physical motivations.

Funder

Spain

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference71 articles.

1. Planck 2015 results. XIII. Cosmological parameters;Ade;Astron. Astrophys.,2016

2. Planck 2015 results. XX. Constraints on inflation;Ade;Astron. Astrophys.,2016

3. Origin of structure in the Universe;Halliwell;Phys. Rev. D,1985

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3