Quasi-probability distributions in loop quantum cosmology

Author:

Berra-Montiel JaselORCID,Molgado AlbertoORCID

Abstract

Abstract In this paper, we introduce a complete family of parametrized quasi-probability distributions in phase space and their corresponding Weyl quantization maps with the aim to generalize the recently developed Wigner–Weyl formalism within the loop quantum cosmology (LQC) program. In particular, we intend to define those quasi-distributions for states valued on the Bohr compactification of the real line in such a way that they are labeled by a parameter that accounts for the ordering ambiguity corresponding to non-commutative quantum operators. Hence, we notice that the projections of the parametrized quasi-probability distributions result in marginal probability densities which are invariant under any ordering prescription. We also note that, in opposition to the standard Schrödinger representation, for an arbitrary character the quasi-distributions determine a positive function independently of the ordering. Further, by judiciously implementing a parametric-ordered Weyl quantization map for LQC, we are able to recover in a simple manner the relevant cases of the standard, anti-standard, and Weyl symmetric orderings, respectively. We expect that our results may serve to analyze several fundamental aspects within the LQC program, in special those related to coherence, squeezed states, and the convergence of operators, as extensively analyzed in the quantum optics and in the quantum information frameworks.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference63 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Star exponentials from propagators and path integrals;Annals of Physics;2024-09

2. Star product approach for loop quantum cosmology;The European Physical Journal Plus;2022-10-17

3. Tomography in loop quantum cosmology;The European Physical Journal Plus;2022-02-28

4. Born–Oppenheimer meets Wigner–Weyl in quantum gravity;Classical and Quantum Gravity;2021-08-24

5. Deformation quantization and the tomographic representation of quantum fields;International Journal of Geometric Methods in Modern Physics;2020-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3