Rotation of polarization in the gravitational field of a laser beam—Faraday effect and optical activity

Author:

Schneiter Fabienne,Rätzel DennisORCID,Braun DanielORCID

Abstract

Abstract We investigate the rotation of the polarization of a light ray propagating in the gravitational field of a circularly polarized laser beam. The rotation consists of a reciprocal part due to gravitational optical activity, and a non-reciprocal part due to the gravitational Faraday effect. We discuss how to distinguish the two effects: letting light propagate back and forth between two mirrors, the rotation due to gravitational optical activity cancels while the rotation due to the gravitational Faraday effect accumulates. In contrast, the rotation due to both effects accumulates in a ring cavity and a situation can be created in which gravitational optical activity dominates. Such setups amplify the effects by up to five orders of magnitude, which however is not enough to make them measurable with state of the art technology. The effects are of conceptual interest as they reveal gravitational spin–spin coupling in the realm of classical general relativity, a phenomenon which occurs in perturbative quantum gravity.

Funder

Alexander von Humboldt-Stiftung

Publisher

IOP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference49 articles.

1. On the gravitational field produced by light;Tolman;Phys. Rev.,1931

2. The gravitational field of light;Bonnor;Commun. Math. Phys.,1969

3. Gravitational properties of light—the gravitational field of a laser pulse;Rätzel;New J. Phys.,2016

4. General relativistic manifestations of orbital angular and intrinsic hyperbolic momentum in electromagnetic radiation;Strohaber,2018

5. The gravitational field of a laser beam beyond the short wavelength approximation;Schneiter;Class. Quantum Grav.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3