A tunable chiral metasurface useable in terahertz imaging and wavefront shaping

Author:

Zhang Xin,Yang Shuang,Gao YachenORCID

Abstract

Abstract We proposed a tunable chiral metasurface comprising a reflective bottom layer of gold, a dielectric layer of polyimide, and a structural top layer of gold-graphene. Its main properties were studied via numerical simulations conducted using CST Studio Suite. The results indicate that, based on the chiral metasurface, we achieved dual-band circular dichroism of −0.5 and 0.77 at 0.9 THz and 1.06 THz, respectively, and complementary near-field imaging applications were realized by tuning the Fermi level (E f ) of graphene. Subsequently, exploiting the exceptional selective characteristics of circularly polarized waves using a chiral metasurface, eight chiral phase-gradient metasurfaces were constructed by rotating the chiral structure. Moreover, based on the Pancharatnam-Berry phase principle, tunable wavefront shaping applications were further realized, including anomalous reflection, vortex beams, and focusing. In anomalous reflection, the reflection angles for left-circularly polarized (LCP) and right-circularly polarized (RCP) incidences are opposite when adjusting the E f of graphene. For example, when the graphene E f is 0 eV and the LCP wave is incident at 0°, the reflection angle is −18°. Conversely, when the graphene E f is 1 eV and the RCP wave is incident at 0°, the reflection angle is 18°. In the application of vortex beams, by adjusting the E f of graphene, we achieved vortex beams with opposite topological charges under different circularly polarized incidences. In the focusing application, the incident LCP and RCP can achieve focusing and defocusing, respectively. And the graphene E f can dynamically control the focusing efficiency at the incident LCP, increasing it from 13.63% to 44.84%.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3