Abstract
Abstract
The explicit construction of non-dispersive flat band modes and the tunability of has been reported for a hierarchical 3-simplex fractal geometry. A single band tight-binding Hamiltonian defined for the deterministic self-similar non-translationally invariant network can give rise to a countably infinity of such self localized eigenstates for which the wave packet gets trapped inside a characteristic cluster of atomic sites. An analytical prescription to detect those dispersionless states has been demonstrated elaborately. The states are localized over clusters of increasing sizes, displaying the existence of a multitude of localization areas. The onset of localization can, in principle, be ‘delayed’ in space by an appropriate choice of the energy of the electron. The tunability of those states leads to the controlled decay of wave function envelope. The impact of perturbation on the bound states has also been discussed. The analogous wave guide model has also been discussed.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献