A terahertz broadband and narrowband switchable absorber based on joint modulation of vanadium dioxide and graphene surfaces

Author:

Zhang YingORCID,Zhou Xingtong,Li You

Abstract

Abstract In this paper, a terahertz broadband and narrowband switchable absorber is proposed. The absorption performance tuning for both broadband and narrowband functions is realized based on the joint modulation of vanadium dioxide (VO2) and graphene surfaces. Concretely, while VO2 is in the metallic state, the absorber achieves broadband absorption function. The overall bandwidth of over 90% absorption is 4.04 THz corresponding to a relative bandwidth of 84%. Through regulating the conductivity of VO2, dynamic tuning of the absorption amplitude is obtained and the modulation depth is 96%. By manipulating the graphene Femi energy and VO2 conductivity simultaneously, dynamic tuning of the absorption bandwidth is realized. In particular, the spectral center frequency of broadband absorption remains stable without drifting during the tuning process. While VO2 is in the insulating state, the absorber achieves narrowband absorption function. Calculated results show that two separate perfect absorption peaks are formed, and the absorption amplitudes are 99.6% and 99.2% respectively. Through regulating the Fermi energy of graphene surface, the dynamic tuning of narrowband absorption frequency is realized. Compared with the ones reported in recent years, our absorber has the advantage on function realization, absorption characteristics and performance tuning.

Funder

National Natural Science Foundation of China

Basic Research Support Program for Outstanding Young Teachers in the University of Hei Longjiang Province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3