Nonlinear modulation of dispersive fast magnetosonic waves in an inhomogeneous rotating solar low-β magnetoplasma

Author:

Turi JyotiORCID,Misra A PORCID

Abstract

Abstract We study the modulation of fast magnetosonic waves (MSWs) in rotating inhomogeneous low-β magnetoplasmas with the effects of gravitation and the Coriolis force. By employing the standard multiple-scale reductive perturbation technique (RPT), we derive a nonlinear Schrödinger (NLS) equation that governs the evolution of slowly varying MSW envelopes. The fast MSW becomes dispersive by the effects of the Coriolis force in the fluid motion, and the magnetic field and density inhomogeneity effects favor the Jeans instability in self-gravitating plasmas in a larger domain of the wave number (k, below the Jeans critical wave number, k J ) than homogeneous plasmas. The relative influence of the Jeans frequency (ω J , associated with the gravitational force) and the angular frequency (Ω0, relating to the Coriolis force) on the Jeans carrier MSW mode and the modulational instability (MI) of the MSW envelope is studied. We show that the MSW envelope (corresponding to the unstable carrier Jeans mode with ω J > 2Ω0 and k < k J ) is always unstable against the plane wave perturbation with no cut-offs for growth rates. In contrast, the stable Jeans mode with ω J > 2Ω0 but k > k J manifests either modulational stability or MI having a finite growth rate before being cut off. We find an enhancement of the MI growth rate by the influence of magnetic field or density inhomogeneity. The case with constant gravity force (other than the self-gravity) perpendicular to the magnetic field is also briefly discussed to show that the fast magnetosonic carrier mode is always unstable, giving MI of slowly varying envelopes with no cut-offs for the growth rates. Possible applications of MI in solar plasmas, such as those in the x-ray corona, are also briefly discussed.

Funder

Council of Scientific and Industrial Research, India

Publisher

IOP Publishing

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3