The effects of abrasive moving speed and motion mode on the thinning mechanism of SiC in three-body contact

Author:

Zhou YuqiORCID,Huang YuhuaORCID,Li Jinming,Lv Weishan,Zhu FulongORCID

Abstract

Abstract Three-body contact is the main contact type in polishing process and leads to a different thinning mechanism than the two-body contact. Molecular dynamics simulation is employed to investigate the thinning mechanism of 3C-SiC substrate in three-body contact. The thinning mechanisms of 3C-SiC under different moving speeds and motion modes of diamond abrasive are compared. Through the analysis of force, temperature, potential energy, stress distribution and atomic flow field, the causes of different thinning mechanisms are explained. It is found that the influence of moving speed is mainly reflected in the temperature rise of substrate when the motion mode of abrasives is the same. The changes of motion mode will significantly alter the stress distribution, which is closely related to the damage depth and atomic flow field. When the feed speed is the same, increasing the self-rotation speed of abrasives can reduce concentration zone of hydrostatic stress and then reduce the damage depth. The self-rotation of abrasives will also change the distribution of von Mises stress, resulting in the different displacement directions of 3C-SiC atoms. Dislocations are more easily generated when the displacement direction of SiC atoms is the same. The moving speed of abrasive is found to have little effect on the thinning mechanism, while the motion mode of abrasive will significantly change the thinning mechanism.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3