Production of reduced graphene oxide from activated rice husk charcoal using a high-energy ball milling method

Author:

Widanarto WahyuORCID,Romdhony Fahriz,Cahyanto Wahyu TriORCID,Sari Kartika,Ghoshal Sib Krishna,Kurniawan Candra

Abstract

Abstract Production of high-quality graphene at a commercial scale with low cost remains challenging. Thus, we used a high-energy ball milling approach to make reduced graphene oxide (rGO) from activated rice husk charcoal as an enriched carbon source. The as-produced rGO samples were characterized to determine the effect of various milling times (0, 50, 100, 150, and 200 min) on their structure, morphology, specific surface area, pores volume, and size distribution. The variation in the ball milling times was found to introduce the structural defects and remove the oxygen functional groups, thus improving the overall characteristics of the obtained rGO. The wrinkle sheet-like structures of rGO evolved into numerous paper balls-like transparent rumple morphologies due to the milling process-enabled compression mechanism. In addition, due to the increase of milling times, the amount of carbon in rGO was increased to 89.9 atomic%, and oxygen was reduced to 9.3 atomic%, wherein the thermal agitation-mediated collisions of particles played a significant role. The specific surface area (121.483 m2 g−1) and pore volume (0.133 cm3 g−1) of rGO prepared at a milling time of 50 min were observed to be optimum. It was asserted that a high-energy ball milling technique with controlled milling times could help produce high-quality rGO from activated rice husk charcoal at low cost, leading to the development of sustainable and environmentally friendly material required for diverse applications.

Funder

Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi Republik Indonesia

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3