Composite electrode materials based on nickel cobalt sulfide/carbon nanotubes to enhance the Redox activity for high performance Asymmetric supercapacitor devices

Author:

Waris Muhammad Hamza,Khan Rizwan,Afzal Amir MuhammadORCID,Iqbal Muhammad Waqas,Imran Muhammad,Mumtaz Muhammad Azhar,Usman Muhammad,Ghfar Ayman A,Mumtaz Sohail,Hussain Zahid

Abstract

Abstract Asymmetric supercapacitor or supercapattery, is a unique device that combines the best features of both supercapacitors and batteries. Specifically, it offers improved cycle life and specific power, which are the strengths of supercapacitors, along with the high energy density that batteries are known for. This technology represents a significant advancement in energy storage and has the potential to revolutionize various industries. In this work, nickel cobalt sulfide (NiCoS) was synthesized through a hydrothermal process and then physically mixed with carbon nanotubes (CNTs). The electrical characteristics of the material were analyzed using a three-electrode and a two-electrode setup. In a three-electrode system, NiCoS/CNTs composite showed a specific capacity of 1542.1 Cg−1 at 2.5 Ag−1. In an asymmetric device, the negative and positive electrode was activated carbon (AC) and NiCoS/CNTs, respectively. The composite of NiCoS/CNTs exhibited a specific capacity of 161.3 Cg−1, which is noteworthy. Additionally, the material demonstrated an exceptional energy density of 35.5 Whkg−1 and a power density of 1800 Wkg−1. The capacity retention of the composite material was 84.0% after 5000 cycles. The composite electrode materials of transition metal sulfide and CNT in a 90/10 wt. ratio provides an opportunity to develop high-performance energy storage devices.

Funder

Researchers Supporting Project

King Saud University, Riyadh, Saudi Arabia

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3