Abstract
Abstract
We present a comprehensive first-principles study of the electronic structure of graphene sheet with periodic vacancy. We report the structural, electronic, and magnetic properties of the graphene sheet with periodic vacancy that possess 48 C & 28 H atoms. Computational analysis based on density functional theory predicts that the periodic vacancy can modulate the properties of graphene sheet. Results show that periodic vacancies lead to the manipulation of band gap & could be utilized to tailor the electronic properties of the sheet. Also, it is found that, the graphene sheet with periodic vacancy is non-magnetic in nature.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献