Impact of rare earth (La, Pr, Eu) impurities on the perovskite SrTiO3 for efficient photocatalytic activity

Author:

Mjahed M,Bouda HORCID,Salmani E,Zahraouy H Ez,Benyoussef A

Abstract

Abstract Owing to the growing demand for environmentally friendly technologies across a wide range of fields, including energy, environment and medicine, photocatalytic materials have gained a lot of interest in recent years. First-principles calculations were used in order to examine a variety of physical characteristics such as electronic density of states, structural, optical, and photocatalytic properties of pristine and rare-earth (RE = La, Pr, Eu) doped SrTiO3. The reported electronic band gap of pristine SrTiO3 is Eg = 3.03 eV, which is reasonably consistent with prior theoretical and experimental studies. On the other hand, related to Sr(1−x)RExTiO3, the obtained energy band gaps are 2.75 eV, 2.80 eV, and 2.90 eV associated with Eu-SrTiO3, Pr-SrTiO3, and La-SrTiO3 respectively. The narrowing of the electronic band gap of the studied systems is due to the incorporation of RE-doped SrTiO3, which greatly enhanced the visible light absorption spectra and photocatalytic properties. Thus, it can be concluded that adding RE elements to this kind of materials, is a suitable choice for optoelectronic and photocatalytic applications.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3