Ultra-broadband high-efficiency cross-polarization conversion and amplitude-phase manipulable multi-functional wavefront manipulation based on terahertz metasurface

Author:

Cai ChengxinORCID,Li Yinfei,He Guangchen,Meng Hongmei,Li Mingxing,Qin YaoORCID,Wang Qifu

Abstract

Abstract Drawing upon the physical phenomenon of polarization transformation, this paper proposes an ultra-broadband, high-efficiency linear polarization converter composed of a metallic grating, an L-shaped metallic patch, and a dielectric substrate. The polarization conversion properties have been scrutinized using the finite element numerical simulation software CST. The computational outcomes reveal that the polarization converter operates within the frequency range of 0.5 THz to 1.8 THz, exhibiting a relative bandwidth of 113%, a transmission coefficient exceeding 0.87, a polarization conversion efficiency approaching 100%, and a phase coverage spanning 360°. Furthermore, a Fabry–Perot interference model was established utilizing Matlab to corroborate the concurrence between the theoretical analysis and the numerical findings. The polarization converter metasurface amalgamates both phase and transmission amplitude variations to accomplish not only a two-dimensional focusing lens operating between 1.55 THz and 1.65 THz, but also a spatial imaging capability utilizing transmission amplitude variation within the 0.5 THz to 1.15 THz range. The outcomes demonstrate that the devised metasurface exhibits ultra-broadband and high transmission efficacy, thus providing novel insights for the versatility of terahertz wave polarization and phase manipulation.

Funder

the National Natural Science Foundation of China

Innovative Funds Plan of Henan University of Technology

Key Scientific and Technological Project of Science and Technology Department of Henan Province

Key Scientific Research Project of Henan Education Department

Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education

Cultivation Plan for Young Key Teachers of Henan University of Technology

The “Double First-Class” Project for Postgraduate Academic Innovation Enhancement Programme of Henan University of Technology

The “Double First-Class” Project for Postgraduate-Cultivating, Innovation Platform Establishment Programme of Henan University of Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3