Abstract
Abstract
The development of microgrippers requires accurate control of force and position for the grasping mechanisms in micromanipulation. This controllability ensures the safe transfer of sensitive micro-objects, such as living cells. The design of microgrippers is often limited by the dimensions and adaptability of the micro-objects being manipulated. Therefore, microgrippers should be customized for each micro-object. Additionally, complex sensor mechanisms are required to control the gripping force. This study introduces a novel design of a four-arm MEMS electrothermal microgripper intended for versatile micromanipulation purposes. The microgripper design procedure is compatible with a list of constraints, including biological and microfabrication constraints. The jaw form is designed to manipulate micro-objects with a wide range of dimensions (1 to 360 μm). Furthermore, a novel approach is presented here to control the force threshold of gripping without a sensor during manipulation. The proposed solution involves using structure stiffening to control the force and prevent damage to micro-objects. GA and analytical models (transient behaviour of structure) are used to satisfy the long list of constraints. The device is fabricated through UV-LIGA, utilizing nickel and copper as the structural and sacrificial layer. The experimental and simulation results demonstrate that the microgripper can achieve a 60 μm jaw displacement at a voltage of 0.329V. The gripping arms can provide a force of 15 to 450 μN for the handling of micro-objects. The maximum gripper temperature of 98 °C makes it suitable for biological applications. The innovative form and systematic design of the microgripper enable its adaptability for various applications.