Electronic transmission and conductance oscillations in electrostatic multibarrier system based on graphene monolayer

Author:

Alsalmi Omar H,Dakhlaoui Hassen,Belhadj WalidORCID,Ungan FatihORCID

Abstract

Abstract The Landauer-Buttiker formalism and the transfer matrix method (TMM) were used to solve the Dirac equation to theoretically explore the transmission coefficient and the conductance of multibarrier graphene systems (MGS). We have addressed the impact of the number of barriers, angle of incidence, and the quantum size of different layers on the electronic properties. The obtained results show that the conductance and the transmission of the carriers can be readily modulated by increasing the number of barriers. It has been observed that an increase in the number of barriers doubles the number of resonant states which leads to the emergence of energetic minibands alternating with minigaps. Furthermore, we found that after doubling the quantum wells the number of resonant states and minigaps increase and their shapes become well defined. Moreover, we considered two cases of incidence (oblique and normal). In the normal incidence case, the structures were completely transparent for different sizes and incident energy values. However, for high angles of incidence, the transmission coefficient presented sharper resonant peaks separated by minigaps. Thereby, according to our theoretical investigations, such structures can be useful for modulating the electronic properties of devices based on electrostatic MGS.

Funder

Deanship of Scientific Research at Umm Al-Qura University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3