Abstract
Abstract
Quadratically Constrained Quadratic Programs (QCQPs) are an important class of optimization problems with diverse real-world applications. In this work, we propose a variational quantum algorithm for general QCQPs. By encoding the variables in the amplitude of a quantum state, the requirement for the qubit number scales logarithmically with the dimension of the variables, which makes our algorithm suitable for current quantum devices. Using the primal-dual interior-point method in classical optimization, we can deal with general quadratic constraints. Our numerical experiments on typical QCQP problems, including Max-Cut and optimal power flow problems, demonstrate better performance of our hybrid algorithm over classical counterparts.
Funder
National Natural Science Foundation of China