A DFT study of the physical properties of novel vanadium-based half-Heusler alloys VYAl (Y = Ni,Pd, and Pt) pertinent to their optoelectronics application

Author:

Lawati Dhan RajORCID,Shrestha PitamberORCID,Sharma ShriramORCID,Joshi Leela PradhanORCID,Parajuli RajendraORCID

Abstract

Abstract We investigated three novel 18-valence electron count (VEC) vanadium-based half-Heusler alloys, VYAl (Y = Ni, Pd, and Pt), for their structural, mechanical, electronic, and optical properties using density functional theory (DFT). The computation was carried out employing Vienna Ab-initio Simulation Package (VASP) and all three alloys have exhibited structural, chemical, mechanical, and thermodynamic stability. We obtained the lattice constants of 5.520, 5.800, and 5.820 Å for VNiAl, VPdAl, and VPtAl, respectively. The elastic parameters imply a ductile and hard nature of the system and exhibit anisotropic behavior. Electronic band characterization demonstrated that all three alloys are semiconductors with direct narrow gaps at the Γ-point which is crucial for photovoltaic applications. In addition to that, the high density of the band states near the Fermi level indicates a promising candidate for thermoelectric conversion. The influence of SOC interaction in the system generates a small shift in the bands. From the optical response, we infer that the studied compounds have exceptional light absorption and reflection quality, making them suitable for optoelectronics purposes.

Funder

International Science Programme, Uppsala University, Sweden

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3