Abstract
Abstract
For purpose of investigating the damage mechanism and tensile properties of the nanocrystalline CoCrCuFeNi high-entropy alloy, the tension experiment simulations were performed using the molecular dynamics method. The effects of the grain size, strain rate, experiment temperature, and percentage of components were considered in detail. By changing the simulated conditions of the tension experiment, the deformation and the grain growth of the nanocrystalline CoCrCuFeNi high-entropy alloy were mentioned and analyzed. The important mechanical factors such as phase transformation, stress-strain relation, shear strain, tensile strength, dislocation density, and von Mises stress were strongly influenced by changing the simulated conditions and deeply discussed.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献