The effect of micro-gap discharge paths on ionization coefficients and similarity theory

Author:

Zhang HaoORCID,Zhao Laijun,Wang Guoda,Ma Guokai,Sun Yanzhou

Abstract

Abstract In order to investigate the impact of discharge paths at the micrometer scale on breakdown, two sets of different electrodes were arranged with electrode gaps ranging from 10 μm to 100 μm and gas pressures varying from 1 kPa to 100 kPa. The research has revealed that without an insulating layer at the edge of the electrode, when the product of gas pressure (p) and electrode gap (d) is less than 60Pa·cm, the number of positive ions cannot satisfy the conditions for self-sustaining discharge at the electrode gap (d). As a result, the discharge path varies along a longer path (s) to satisfy the conditions for self-sustained discharge, thereby maintaining the minimum breakdown voltage. This long-path discharge mechanism affects the ionization coefficient, resulting in an inconsistency between the ionization coefficient ratio at different distances and their respective scale factor (k) values. Therefore, on a micrometer scale, changes in the path make the application of similarity theory no longer applicable.

Funder

National Natural Science Foundation of China

Doctoral Fund of Henan Polytechnic University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference31 articles.

1. Micro discharges and their applications;Ouyang;High Voltage Engineering,2016

2. Review of electrical breakdown characteristics and discharge laws in micro-nano scales;Cheng;Transactions of China Electrotechnical Society,2017

3. Research progress on numerical simulation of gas breakdown at microscale;Meng;Transactions of China Electrotechnical Society,2022

4. Electrical breakdown from macro to micro/nano scales: a tutorial and a review of the state of the art;Fu;Plasma Res. Express,2020

5. Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure;Loveless;Appl. Phys. Lett.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3