Systematic study of the isotopic dependence of heavy-ion fusion cross sections at below- and above-barrier energies

Author:

Gharaei RORCID,Shahraki Farkhonde M

Abstract

Abstract The present work provides a systematic study on the role of nuclear surface tension in the isotopic dependence of the fusion cross sections at below- and above-barrier energies over wide range of neutron content (0.5 < N/Z < 1.7). To realize our goal, we select three different versions of proximity-based potential, involving proximity potential 1977, 1988, and 2010, in order to calculate the nucleus-nucleus potential and ultimately the fusion barrier parameters. It is shown that the barrier positions, heights, and curvatures follow a (second-order) non-linear isotopic behavior with addition of neutrons which are dependent on the effect of variation in the nuclear surface tension. Our findings reveal that the sensitivity of isotopic dependence of the fusion barrier characteristics to the effect of surface energy coefficients γ increases by increasing the asymmetry of the colliding pair. In addition, we demonstrate the sensitivity toward the coefficient γ is seen more clearly from the more neutron-rich nuclei compared to the neutron-deficient ones. We discuss the isotopic dependence of the fusion cross sections at below- and above-barrier energies within the framework of the Wong model for a single potential barrier. For above-barrier energies, it is shown that the fusion cross sections follow an increasing (second-order) non-linear trend due to the addition of neutrons. While a decreasing (second-order) non-linear trend exists for the variation in the fusion cross sections at below-barrier energies. Simultaneous comparison the results obtained by the 3 versions of proximity potential for the isotopic dependence of fusion cross sections in the mentioned energy regions reveal the importance of the quantum tunneling and also nuclear structure effects.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3