Molecular dynamics study on martensitic transformation behavior of SLM-NiTi alloy induced by temperature and stress

Author:

Che Jianwei,Shi GuangfengORCID,Li Lunxiang,Yu Zhenglei,Zhang Jingran,Wang Yonghua,Zhou Tianwen

Abstract

Abstract Selective laser melting (SLM) technology is currently one of the most promising additive manufacturing technologies for complex metal components. NiTi alloy has been highly regarded in advanced applications due to its excellent shape memory and good biocompatibility. However, as a new material, SLM-NiTi alloy is far from being applied in actual advanced fields. In the actual processing, such as grinding, turning, polishing, electrical discharge machining, all involve changes in temperature and stress, Therefore, it is very important to study the martensitic phase transition caused by temperature and stress changes in the precision machining process of SLM-NiTi alloy. However, it is difficult to observe the martensitic phase transition changes directly in the actual processing, so the method of molecular dynamics is adopted in this paper. Moreover, in the process of preparing NiTi alloy by selective laser melting, the ratio of Ni to Ti is very important, which determines the final forming quality. Therefore, this paper studied the martensitic transformation behavior induced by temperature and stress under different nickel proportions, different initial temperatures and different model sizes, and expounded the variation laws of stress–strain, potential energy, volume and dislocation. The microstructure and shear strain were demonstrated on the atomic scale. The results show that temperature plays an important role in the martensite transformation of SLM-NiTi alloy, low temperature will largely inhibit martensite transformation, and high temperature will promote martensite transformation. The stress induced martensite reorientation in SLM-NiTi alloy is accomplished by the migration of the interface between different martensite variants. When the nickel content is 52% and 55%, there is no inflection point between volume and potential energy with the change of temperature, when the nickel content is 50.8%, there is an obvious jump between volume and potential energy. The research in this paper is helpful to guide the processing technology of SLM-NiTi alloy, and also broadens the application of additive manufacturing materials.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3