Acoustic energy harvesting with irradiated cross-linked polypropylene piezoelectret films

Author:

Xue YuanORCID,Zhao JinfengORCID,Zhang Xiaoqing,Sessler Gerhard MORCID,Kupnik Mario

Abstract

Abstract Piezoelectret films prepared by irradiated cross-linked polypropylene (IXPP) not only feature a large figure of merit (d 33 · g 33, FoM) and a nearly flat response of the sensitivity as a microphone (4 mV Pa−1) in the audio range, but also exhibit a good impedance match to air. Therefore, this material is appropriate for air-coupled sonic and ultrasonic applications. In this work, we report acoustic energy harvesting using IXPP piezoelectret films without mass loading both in ultrasonic and low-frequency ranges. Under an input sound pressure level (SPL) of 100 dB (or 2 Pa) and a resonance frequency of 53 kHz, a maximum output power of 7.2 nW is obtained for an IXPP film harvester. Despite its high resonance frequency, the large FoM of IXPP piezoelectret films suggests itself to be a promising candidate also for low-frequency acoustic energy harvesting with the help of Helmholtz resonators. An output power of 10.3 nW is achieved for a harvester with a 16 cm2 large IXPP film within a Helmholtz resonator, which features a resonance frequency of 900 Hz, with an optimized load resistance of 962 kΩ under an input SPL of 100 dB. In comparison to acoustic energy harvesters based on ferroelectric polymer polyvinylidene fluoride cantilever beams, our devices have much higher output power density under the same conditions and much broader bandwidth. Theoretical analysis and numerical simulations are performed to confirm the experimental results. Moreover, the output power of the IXPP acoustic energy harvesters can be further improved by increasing the active area of the piezoelectret films.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference43 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3