Single phase based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor

Author:

Jamshed WasimORCID,Devi Suriya Uma,Nisar Kottakkaran SooppyORCID

Abstract

Abstract Hybrid nanofluids is the suspension of two different types of nanoparticles in the base fluid. This enhances the heat transfer capabilities of the ordinary fluids and prove to better heat exponent as compare to the nanofluids. In this research, we investigate the nanofluid for its flow and heat transport features by subjecting it to a slippery surface. The fluid motion disturbance is achieved by with the utilization of non-linear, uniform horizontal porous stretching of the surface with in a Darcy type porous media. The effect of nanoparticle shapes, porous medium, variable thermal conductivity and thermal radiation are also included in this analysis. A numerical method, Keller box is used to find the self-similar solution of equations. Two different types of nanoparticles, Copper(Cu) and Silver(Ag) with non-Newtonian Engine Oil (EO) based fluid have been taken into consideration for our analysis. The valuable finding of this study is that the comparative heat transfer rate of Williamson hybrid nanofluids (AgCu/EO) gradually more increases as compared to conventional nanofluids (CuEO). Moreover, Lamina-shaped particles result in the most significant temperature in the boundary layer, while the lowest temperature is observed in spherical-shaped nanoparticles. Finally entropy of the system exaggerates with the incorporation of nanoparticle percentage by volume, thermal radiation, variable thermal conductivity and Williamson variable.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3