Dy3+ doped KCa(PO3)3 phosphor for white light generation: structural and luminescent studies

Author:

Deepti ,Maurya Sandip,Kumari Sheetal,Rohilla Pooja,Prasad Aman,Rao A SORCID

Abstract

Abstract Using the traditional solid-state reaction approach, Dy3+ ions doped KCa(PO3)3 phosphors have been synthesized to investigate their luminescent properties to produce high-quality white light for solid-state lighting applications, particularly in white LEDs. x-ray diffraction (XRD) patterns were used to examine the structure and phase of the phosphors. Using scanning electron microscopy (SEM), the morphology of the as-synthesized phosphor has been investigated. Fourier transform infrared spectroscopy (FT-IR) has been used to investigate several vibrational bands seen in the phosphor. Using diffuse reflectance spectra (DRS), the as-synthesized phosphors’ optical band gap values have been estimated. When Dy3+ ions are excited at 350 nm, the photoluminescence (PL) spectra characteristics observed for the activated KCa(PO3)3 phosphor show strong white area emission due to both 575 nm, which is related to the 4F9/26H13/2 and 482 nm that is ascribed to 4F9/2 6H15/2 transition of Dy3+ ions. Additionally, the concentration quenching of Dy3+ ions doped at 4 mol% is seen in the PL spectra. Based on the observed PL spectra, the computed CIE chromaticity coordinates for the optimised KCa(PO3)3 phosphors are located in the deep white area. The lifespan of the as-titled phosphors decreases as the amount of Dy3+ ions increases in the host lattice. Additionally, the PL decay profiles shows a dual exponential behaviour when excited at 350 nm, with an emission wavelength at 575 nm. The lifetime values were used to calculate the quantum efficiency of the as prepared phosphors. On the basis of the results of the aforementioned studies, we wish to project Dy3+ ion doped KCa(PO3)3 phosphors as white light generating materials in w-LEDs and for other photonic applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3