Quantum approximate optimization algorithm in non-Markovian quantum systems

Author:

Yue Bo,Xue ShibeiORCID,Pan YuORCID,Jiang MinORCID

Abstract

Abstract Although quantum approximate optimization algorithm (QAOA) has demonstrated its quantum supremacy, its performance on Noisy Intermediate-Scale Quantum (NISQ) devices would be influenced by complicated noises, e.g. quantum colored noises. To evaluate the performance of QAOA under these noises, this paper presents a framework for running QAOA on non-Markovian quantum systems which are represented by an augmented system model. In this model, a non-Markovian environment carrying quantum colored noises is modelled as an ancillary system driven by quantum white noises which is directly coupled to the corresponding principal system; i.e. the computational unit for the algorithm. With this model, we mathematically formulate QAOA as piecewise Hamiltonian control of the augmented system, where we also optimize the control depth to fit into the circuit depth of current quantum devices. For efficient simulation of QAOA in non-Markovian quantum systems, a boosted algorithm using quantum trajectory is further presented. Finally, we show that non-Markovianity can be utilized as a quantum resource to achieve a relatively good performance of QAOA, which is characterized by our proposed exploration rate.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3