An analysis of axisymmetric Sezawa waves in elastic solids

Author:

Bian ChunleiORCID,Wang JiORCID,Bin Huang ORCID,Xie LongtaoORCID,Yi LijunORCID,Yuan Lili,Li Honglang,Tian Yahui

Abstract

Abstract The wave propagation in elastic solids covered by a thin layer has received significant attention due to the existence of Sezawa waves in many applications such as medical imaging. With a Helmholtz decomposition in cylindrical coordinates and subsequent solutions with Bessel functions, it is found that the velocity of such Sezawa waves is the same as the one in Cartesian coordinates, but the displacement will be decaying along the radius with eventual conversion to plane waves. The decaying with radius exhibits a strong contrast to the uniform displacement in the Cartesian formulation, and the asymptotic approximation is accurate in the range about one wavelength away from the origin. The displacement components in the vicinity of origin are naturally given in Bessel functions which can be singular, making it more suitable to analyze waves excited by a point source with solutions from cylindrical coordinates. This is particularly important in extracting vital wave properties and reconstructing the waveform in the vicinity of source of excitation with measurement data from the outer region.

Funder

National Natural Science Foundation of China

The Technology Innovation 2025 Program of the Municipality of Ningbo

Research and Development Program of Key Disciplines of Guangdong Province

Research and Development Program in Key Disciplines of Hunan Province

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference29 articles.

1. Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces;Sezawa;Bulletin of the Earthquake Research Institute of Tokyo University,1927

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3