Investigation of radiation shielding by adding Al2O3 and SiO2 into the high-speed steel composites: comparative study

Author:

Gökmen UğurORCID,Özkan Zübeyde,Taşcı Ufuk,Bilge Ocak SemaORCID

Abstract

Abstract In this study, Phy-X/PSD software was utilized for searching the neutron shielding and gamma-ray shielding features of the high-speed steel composites. The effects of the Al2O3 and SiO2 contents on the irradiation properties of the T15 (0.4Si, 0.4Mn, 0.5Mo, 1.5C, 4.5Cr, 4.75Co, 5.0 V, 12.5 W) + (0%–30%) composite material were examined. The properties of the linear attenuation coefficients (LAC), half-value layer (HVL), fast neutron removal cross-sections (FNRC), mean free path (MFP), effective conductivity (C eff ), mass attenuation coefficient (MAC), exposure buildup factors (EBF), tenth-value layer (TVL), effective atomic number (Z eff ) were determined for the energy varying between 0.015 MeV and 15 MeV. The investigation revealed that the MAC and LAC values in the T15 composite material declined with the increase in the SiO2 or Al2O3 contents in the composite. On the other hand, the Geometric Progression (G-P) method was utilized to determine the EBFs under the penetration depth of up to 40 mfp and the same energy range. According to the results of the G-P method, the values of HVL varied from 0.01 to0.034 cm, TVL values varied from 0.01 to 0.112 cm, while FNRC values varied from 6.584 cm−1 to 8.27 cm−1, and C eff values varied from 1.36 × 1011 S m−1 to 3.12 × 1011 S m−1. The results revealed that the T15 high-speed steel composite provided the maximum photon shielding capacity because it showed the lowest HVL value while showing the highest Z eff , and MAC values. The T15 + 20% Al2O3 composite material had the highest FNRC due to its higher density. The present investigation can be considered original in terms of a few aspects. Consequently, these new shielding materials can be chosen as shielding materials against gamma radiation. In addition to contributing to several popular technologies including space technologies and nanotechnology, the present study can also contribute to nuclear technology.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3