Numerical modeling of defects induced dark current in halide perovskite X-ray detectors

Author:

Yang Bin,Xie Xiangfan,Zeng Shengqiao,Xue Bin,Xiao ShuangORCID,Qian LihuaORCID

Abstract

Abstract Metal halide perovskites have been widely used in x-ray detection due to their outstanding optoelectronic properties. However, the dark current of perovskite x-ray detectors is not appreciably low for integration on thin-film transistors pixel circuits and thus limits their applications in X-ray imaging. Based on numerical models, we investigate the correlation between the dark current and defects of perovskite x-ray detectors. The deep-level defects are the major factor to induce dark current, which has a proportional relation to the defect density. Compared to deep-level defects, the dark current induced by shallow-level defects depends on both of defect energy level and defect density. At last, simulation results present a guidance to engineer defects with suitable values of density and energy level, which yields desirably low dark current. This work provides implications and theoretical guidance for the optimization of defects in halide perovskites, which is believed to assist the further development of x-ray detectors with a low dark current density.

Funder

NSFC

Guangdong Provincial Science and Technology Plan

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Science and Technology Program

Natural Science Foundation of Top Talent of SZTU

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3