Abstract
Abstract
In this study, the quantum-memory assisted entropic uncertainty (QM-EU) and entanglement dynamics of the two-qubit Heisenberg XXX chain have been explored in the presence of intrinsic decoherence. The effect of the x-component of Dzyaloshinskii-Moriya (DM) and Kaplan-Shekhtman-Entin-Wohlman-Aharony (KSEA) interactions has been considered. The generation and preservation of quantum memory and entanglement have been examined for various values of the DM, KSEA, spin-spin, and spin coupling strengths. The uncertainty negatively affects the entanglement and both have anti-correlation. The absence and presence of intrinsic decoherence prevail in differing impacts on the dynamics of the system. In the first case, prolonged entanglement preservation, uncertainty suppression, and oscillatory dynamics have been observed. Moreover, in order to achieve the best-prolonged entanglement preservation and relative reduction of the entropic uncertainty, we have analyzed several parameter settings. We find that the effects of raising the DM, KSEA, and spin-spin interaction individually and simultaneously are different. The individual and simultaneous increase of the DM, KSEA, and spin-spin interaction parameters control the degree of entanglement, entropic uncertainty, and primarily the dynamics of the system.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Reference55 articles.
1. Basic energy sciences roundtable: opportunities for basic research for next-generation quantum systems;Awschalom;USDOE Office of Science (SC)(United States),2017
2. Quantum associative memory;Ventura;Inf. Sci.,2000
3. The memory gap and the future of high performance memories;Wilkes;ACM SIGARCH Computer Architecture News,2001
4. Classicality without decoherence: a reply to Schlosshauer;Ballentine;Found. Phys.,2008
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献