Varying electrical and dielectric properties of Ni:SnO2 films by MWCNTs and GNPs coating

Author:

Sarf FatmaORCID,Er Irmak Karaduman,Ajjaq Ahmad,Çağırtekin Ali OrkunORCID,Yakar Emin,Acar Selim

Abstract

Abstract In this research, pure SnO2 and Ni-doped SnO2 (Ni:SnO2) nanocomposite films were produced by chemical bath deposition method and the latter were coated with multi-walled carbon nanotubes (Ni:SnO2/MWCNTs) or graphene nanoplatelets (Ni:SnO2/GNPs) by spin coating. All samples have tetragonal rutile SnO2 structure with the presence of carbon (002) peak in MWCNTs- or GNPs-coated films. Crystallite size of SnO2 films decreased remarkably with Ni doping followed by a slight decrease with MWCNTs coating and slight increase with GNPs coating. Scanning electron microscope images manifested a dispersed agglomerative nature of SnO2 nanoparticles which reduced especially with MWCNTs coating due to the porous surface provided by carbon nanotubes. From the photoluminescence measurements, oxygen defects-related peaks were spotted in the SnO2-based structures with different luminescence intensities. The most significant decrease in resistance was observed with the addition of GNPs into Ni-doped SnO2 nanocomposites compared to the other produced films mainly due to the synergetic effect that promotes excellent charge transfer between surfaces of Ni:SnO2 and graphene nanosheet. The huge increase in conductivity of GNPs-coated films led to a huge increase in dielectric losses and this followed by a drop down of dielectric constant of the GNPs-coated films.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3