Amplification of quantum transfer and quantum ratchet

Author:

Kozyrev Sergei VORCID,Pechen Alexander NORCID

Abstract

Abstract Amplification of quantum transfer and ratchet–type processes are important for quantum technologies. We also expect that quantum ratchet works in quantum photosynthesis, where possible role of quantum effects is now widely discussed but the underlying dynamical processes are still not clearly known. In this work, we study a model of amplification of quantum transfer and making it directed, which we call the quantum ratchet model. The model is based on a special quantum control master equation with dynamics induced by a feedback-type process. The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels. A similarity between this model and the model of coherent transport in quantum photosynthesis, where the time dependence of the Hamiltonian arises due to vibrons, is studied. Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency. We study with which parameters the quantum ratchet minimizes the exction recombination time and show that the experimentally known values of the parameters of the photosynthetic reaction center correspond to values of the parameters of the quantum ratchet which realize a local minimum of the exciton recombination time. We also find other values of the parameters of the quantum ratchet minimizing the exciton recombination time, which correspond to a twice smaller frequency of the vibron compared to that observed in experiments.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3