Computational modelling of light-matter interaction in aSi with CdSe/ZnS core/shell quantum dots and metal nanoantenna for solar cell applications

Author:

Rodhuan Mirza BasyirORCID,Abdul-Kahar RosmilaORCID,Ameruddin Amira SaryatiORCID,Mohd Rus Anika ZafiahORCID,Tay Kim GaikORCID

Abstract

Abstract As the world population rises, energy needs are become critical. Using photovoltaic technologies like amorphous silicon solar cells (aSiSC) to harvest solar power might benefit global concern. Previous research claimed that aSiSCs were modest short-wavelength absorbers. Quantum dot (QD) may be applied to the aSiSC to enhance optical absorptions and electric fields as the QD’s bandgap is tunable, which can cover a broader electromagnetic range. This study aims are to design the 3D aSiSC with QD on the model and to investigate the optical absorption peak, electric field profiles, and light–matter interaction of the models via COMSOL Multiphysics software. From the base model, the optical absorption improved from 736 nm at 41.827% to 46.005% at 642 nm for the aSiQDSC model which developed with 0.5/3.0 nm radius of core/shell cadmium selenide/zinc sulphide (CdSe/ZnS). This study proceeded combining rectangular nanosheets gold and silver nanoantenna (Au and Ag NA) with various gap g of NA to the aSiQDSC models where g = 0.5 nm Ag NA model was presented the higher optical absorption of 47.246% at 650 nm, and electric fields of 2.53 × 1010 V nm−1. Computationally, this ultimate design is ecologically sound for solar cell applications, which allow future direction in renewable energy research and fabrication.

Funder

Universiti Tun Hussein Onn Malaysia

Ministry of Higher Education

Fundamental Research Grant Scheme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference71 articles.

1. Core/shell quantum-dot-based solar-driven photoelectrochemical cells;Channa,2020

2. Metal-enhanced fluorescence of interlaminar composite film with self-assembled quantum pdots/Au@SiO2 microarchitecture;Lu;Org. Electron.,2020

3. Core/shell quantum-dot-sensitized solar cells;Selopal,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3