Exploring the impact of strain on the electronic and optical properties of inorganic novel cubic perovskite Sr3PI3

Author:

Rahman Md FerdousORCID,Harun-Or-Rashid Md,Islam Md RasidulORCID,Ghosh AvijitORCID,Hossain M KhalidORCID,Bhattarai SagarORCID,Pandey RahulORCID,Madan JayaORCID,Ali M AORCID,Ismail Abu Bakar MdORCID

Abstract

Abstract Inorganic perovskite materials have drawn great attention in the realm of solar technology because of their remarkable structural, electronic, and optical properties. Herein, we investigated strain-modulated electronic and optical properties of Sr3PI3, utilizing first-principles density-functional theory (FP-DFT) in detail. The SOC effect has been included in the computation to provide an accurate estimation of the band structure. At its Г(gamma)-point, the planar Sr3PI3 molecule exhibits a direct bandgap of 1.258 eV (PBE). The application of the spin-orbit coupling (SOC) relativistic effect causes the bandgap of Sr3PI3 to decrease to 1.242 eV. Under compressive strain, the bandgap of the structure tends to decrease, whereas, under tensile strain, it tends to increase. Due to its band properties, this material exhibits strong absorption capabilities in the visible area, as evidenced by optical parameters including dielectric function, absorption coefficient, and electron loss function. The increase in compressive or tensile strain also causes a red-shift or blue-shift behavior in the photon energy spectrum of the dielectric function and absorption coefficient. Finally, the photovoltaic (PV) performance of novel Sr3PI3 absorber-based cell structures with SnS2 as an Electron Transport Layer (ETL) was systematically investigated at varying layer thicknesses using the SCAPS-1D simulator. The maximum power conversion efficiency (PCE) of 28.15% with JSC of 34.65 mA cm−2, FF of 87.30%, and VOC of 0.92 V was found for the proposed structure. Therefore, the strain-dependent electronic and optical properties of Sr3PI3 studied here would facilitate its future use in the design of photovoltaic cells and optoelectronics.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3