Comprehensive investigation of the atmospheric Modulation Transfer Function (MTF) for satellite imaging payloads: considering turbulence and aerosol effects over Tehran

Author:

Hosseini HojatORCID,Khoshsima Masoud

Abstract

Abstract In the realm of remote sensing using satellite imagery, real-time and region-specific estimation of Modulation Transfer Function (MTF) is critical for assessing, designing, and selecting optimal payloads, channels, and imaging conditions. The variability of Earth’s atmosphere introduces uncertainties that complicate the development of a universally applicable MTF model, particularly challenging in urban areas that are prone to aerosol pollution and heat island effects. In this research, the atmosphere of the Tehran metropolitan area, which has not been extensively studied in terms of the MTF of overflying satellites, was investigated over five days in 2021 which were selected based on data availability and to cover a variety of different conditions. A general Small Angle Approximation (SAA) method is utilized to calculate the aerosol MTF, with Boundary Layer Heights (BLH) and Aerosol Layer Heights (ALH) validated against the literature, long-term observations, numerical models, and real-time observations. The turbulence MTF is calculated using a short-exposure isotropic Kolmogorov turbulence model. The refractive index structure parameter (C n 2) is determined using the general HMNSP99 model due to the absence of an established and calibrated model for Tehran. The assumptions for the turbulence MTF model are selected to cover a wide range of practical and widely used satellites over Tehran, while the uncertainties in the radiosonde data are taken into account by employing Monte Carlo simulations to model the effective C n 2 for Tehran. The results cover the effects of varieties in aerosol layer optical properties, particle types and size distribution, as well as variations in weather conditions and atmospheric state on the MTF and offer valuable insights for optimizing satellite imaging systems in urban atmospheric conditions and set the stage for further regional studies focused on enhancing image compensation and payload design.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3