Structural, optical, and dielectric properties of hydrothermally synthesized SnO2 nanoparticles, Cu/SnO2, and Fe/SnO2 nanocomposites

Author:

Sedky A,Afify Naser,Hakamy A,Abd-Elnaiem Alaa MORCID

Abstract

Abstract The structural and optical properties, as well as dielectric characteristics at various frequencies (0.1 Hz—20 MHz) and temperatures, T (300–400 K), of hydrothermally synthesized SnO2 nanoparticles, Cu/SnO2, and Fe/SnO2 composites have been investigated. The crystal structure is mostly formed of a tetragonal SnO2 phase, with a second phase of monoclinic CuO or rhombohedral Fe2O3 detected in Cu/SnO2, and Fe/SnO2 composites, respectively. The direct optical band gap, residual dielectric constant, and density of charge carriers are increased, while ac conductivity (σ ac) and dielectric constant decreased in Cu/SnO2 and Fe/SnO2. The value of σ ac was decreased while the electric Q-factor was increased by increasing T. SnO2 obeyed the hole-conduction mechanism for 400 ≥ T (K) ≥ 300, while Cu/SnO2 and Fe/SnO2 obeyed the electronic-conduction mechanism for 400 ≥ T (K) > 300. The binding energy is independent of T for SnO2, whereas it increases with rising T for Cu/SnO2 and Fe/SnO2 composites. F-factor and electronic polarizability are improved by a rise of T for SnO2 and Cu/SnO2 meanwhile are decreased for Fe/SnO2. The electrical impedance of the grains and their boundaries as well as equivalent capacitance are increased by increasing T and have higher values for Fe/SnO2 at T > 300 K. The obtained results recommend the synthesized Cu/SnO2 and Fe/SnO2 composites to be used as catalysts for water purification, anodes for lithium batteries, supercapacitors, and solar cell applications amongst others.

Funder

Umm Al-Qura University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3