Influence of electroless NiP/graphene coating on treated woven ramie fiber and its characterization

Author:

Mylsamy Goudilyan,Krishnasamy PrabuORCID

Abstract

Abstract Over the years, several researchers have attempted to develop a functional surface through coating technology. However, developing a natural fiber into a functional material continues to be a challenging task. Herein, in the current study, an attempt is made to deposit nickel-phosphorus (NiP)/Graphene (Gr) on the surface of sodium hydroxide (NaOH) treated ramie fiber (RF) to improve its electrical conductivity and wettability. The influence of NaOH treatment, NiP/Gr coating on the fiber surface is studied by microstructural analysis, elemental compositions, x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Atomic force microscopy (AFM), wettability, and electrical conductivity. The obtained results confirm the presence of NiP and Graphene on the treated-coated ramie fiber with intensity peaks at 45° and 28°. The analysis of the microstructures reveal the cauliflower and flakes structure of NiP and graphene. The NaOH-treated and NiP-coated sample (T/NiP/RF) has enhanced electrical conductivity of 56.7% when compared to the untreated NiP-coated sample (NiP/RF), whereas the addition of graphene (T/NiP/Gr/RF) increases the electrical conductivity by 74% (14.85 (Ω cm)−1) compared to T/NiP/RF (8.54 (Ω cm)−1).

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3