Investigation of optical, dielectric properties and conduction mechanism of LiCo0.7Mn0.3O2

Author:

Moufida Krimi,Altarifi M Saleh M,Ben Rhaiem AbdallahORCID

Abstract

Abstract The development of a multifunctional material with variety in its properties is a powerful research project. The electrochemical properties of LiCo0.7Mn0.3O2 material have attracted our attention to search electrical characterization and the optical properties of this material. The synthesis of this compound is based on a solid state method. The x-ray powder diffraction analysis shows that the compound crystallizes in the hexagonal system with the R −3 m space group. Moreover, the homogenous distribution of grain is revealed by the EDX study, thus the grain size is about 2.5 μm calculated from the scanning electron microscopy data. The band gap energy was established and seems to be equal to 1.88 eV which confirms the semiconductor character of this compound. Impedance spectroscopy was performed in the temperature ranging from 363 K to 473 K and frequency varying between 0.1 to 106Hz. The Nyquist plots confirm the presence of grains and grain boundary contribution instead of electrode polarization. The obtained conductivity properties indicates the semiconductor behavior of our compound, also it confirms its reliability for electrochemical application. Ac conductivity has been adjusted using the Jonsher power law, which allows us to confirm that the dc conductivity is thermally activated with activation energy of 400 meV and 500 meV for 363–423 K, 423–473 K regions, respectively. Temperature dependence of the exponent s reveals that the conduction process is governed by the correlated barrier hopping model (CBH). Besides, the temperature coefficient of resistivity (TCR) affirmed that LiCo0.7Mn0.3O2 is a good candidate for bolometric applications.

Funder

Tunisian Ministry of Higher Education and Scientifc Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3