On non-monotonic temperature dependence of linear contact probability in atomic chains

Author:

Sharma Akariti

Abstract

Abstract In this paper, we theoretically investigate the temperature T dependence of linear contact probability in atomic chains. In these chains, the transverse motion of the electrons is assumed to be confined in the harmonic oscillator confinement model. The intra-chain electron correlations are treated within both Hartree–Fock Approximation (HFA) and Random Phase Approximation (RPA). As artifact HFA correlation functions are used in the RPA perturbative calculations. Results are presented for numerically computed pair-correlation functions at different temperatures and electron densities. An enhanced singlet-state is observed in these chains at zero inter-electronic spacing which remains independent of T. At non zero inter-electronic spacing, shrinking of Pauli’s hole is observed with increasing T. Using the RPA, the short-range pair-correlation functions are found to be considerably modified at finite-T and contact probability shows non-monotonic dependence on T. Smearing of exchange-correlation hole is also observed above a critical value of T in the diffusion zone. We also estimate the strength of the coupling parameter up to what the RPA is capable of dealing with carrier correlations in atomic chains. This work may prove useful for density functional theory calculations as estimation of the exchange-correlation hole is imperative for exchange-correlation functionals.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3