Pressure induced superconducting state in ideal topological insulator BiSbTe3

Author:

Gangwar Vinod K,Kumar Shiv,Singh Mahima,Ghosh Labanya,Zhang Yufeng,Shahi Prashant,Muntwiler MatthiasORCID,Patil Swapnil,Shimada KenyaORCID,Uwatoko Yoshiya,Sau Jyotirmoy,Kumar ManoranjanORCID,Chatterjee SandipORCID

Abstract

Abstract Structural, pressure-dependent resistivity, angle resolved photoemission spectroscopy (ARPES), x-ray photoelectron diffraction (XPD) and band structure by DFT calculation have been investigated for BiSbTe3 Topological insulator. It has been demonstrated that the Dirac point of the topological surface state (TSS) located exactly at the Fermi level. Additionally, superconductivity emerges under pressure of 8 GPa with a critical temperature of ∼2.5 K. With further increase of pressure, the superconducting transition temperature (Tc) increases and at 14 GPa it shows the maximum Tc (∼3.3 K). It has also been shown that the surface state remains unchanged under pressure and has been suggested that the origin of the superconductivity is due to the bulk state. The investigation indicates that the BiSbTe3 has robust surface states and becomes superconductor under pressure.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3