A theoretical study of ferrocene based on combined configuration interaction singles (CIS) and time-dependent density functional theory (TDDFT) approach

Author:

Trivedi RaviORCID,Bhattacharyya Pritam

Abstract

Abstract The state-of-the art density functional theory (DFT) is used to clearly resolve the two parallel cyclopentadienyl rings of ferrocene, which are either staggered (D5d symmetry) or eclipsed (D5h symmetry), in their ground-state conformation. Present result revealed that the eclipsed conformer with D5h point group represents the true minimum ground state structure of ferrocene. Natural population analysis is used to determine how atomic charge is distributed across different atoms of ferrocene D5h conformer and also the distribution of electrons in the core, valence, and Rydberg sub-shells. It is further investigated in potential energy scan that the rotation of the dihedral angle δ from 0° to 3π/5 will reproduce three times D5h or D5d conformers periodically as the period of 2π/5 due to the pentagonal structure of the CP ring. Further to examine optical spectra in the ultraviolet-visible (UV–vis) range, configuration interaction single (CIS) and time-dependent density functional theory (TDDFT) have conducted which help in locating the significant electronic shifts between different energy levels. Absorption spectra for high spin states were also generated in order to comprehend the characteristics of low-lying spin excitation. According to our estimates, the greatest absorption intensity is restricted to an energy range of 4–6 eV. Knowledge of ferrocene conformers will improve the research on other metallocenes and their derivatives, which have applications in biotechnology, nanotechnology, and solar technology.

Funder

the Science and Engineering Research Board (SERB), Department of Science and Technology

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference65 articles.

1. A new type of organo-iron compound;Kealy;Nature,1951

2. 114. Dicyclopentadienyliron;Miller;J. Chem. Soc.,1952

3. The structure of iron bis-cyclopentadienyl;Wilkinson;J. Am. Chem. Soc.,1952

4. Bis-cyclopentadienyl iron: a molecular sandwich;Dunitz;Nature,1953

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3