Abstract
Abstract
The state-of-the art density functional theory (DFT) is used to clearly resolve the two parallel cyclopentadienyl rings of ferrocene, which are either staggered (D5d symmetry) or eclipsed (D5h symmetry), in their ground-state conformation. Present result revealed that the eclipsed conformer with D5h point group represents the true minimum ground state structure of ferrocene. Natural population analysis is used to determine how atomic charge is distributed across different atoms of ferrocene D5h conformer and also the distribution of electrons in the core, valence, and Rydberg sub-shells. It is further investigated in potential energy scan that the rotation of the dihedral angle δ from 0° to 3π/5 will reproduce three times D5h or D5d conformers periodically as the period of 2π/5 due to the pentagonal structure of the CP ring. Further to examine optical spectra in the ultraviolet-visible (UV–vis) range, configuration interaction single (CIS) and time-dependent density functional theory (TDDFT) have conducted which help in locating the significant electronic shifts between different energy levels. Absorption spectra for high spin states were also generated in order to comprehend the characteristics of low-lying spin excitation. According to our estimates, the greatest absorption intensity is restricted to an energy range of 4–6 eV. Knowledge of ferrocene conformers will improve the research on other metallocenes and their derivatives, which have applications in biotechnology, nanotechnology, and solar technology.
Funder
the Science and Engineering Research Board (SERB), Department of Science and Technology
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献