Abstract
Abstract
We describe a joint experimental and theoretical investigation on oxygen double photoionization—the emission of two electrons from atomic oxygen following single photon absorption. High-resolution experimental measurements were performed at the Advanced Light Source, revealing sharp resonance structure superimposed on the more familiar Wannier-like, nearly-linear background. These resonance features are attributed to ionization-plus-excitation Feshbach resonances embedded in the double ionization continuum, doubly-excited states that lie above the double-ionization threshold. Such features are absent in the double photoionization cross section of He, or other quasi-two-electron systems, for which the doubly-ionized atomic core remains inert. For a corresponding theoretical analysis, the R-matrix with pseudostates (RMPS) method was invoked by calculating final-state, two-electron resonances-plus-continua wavefunctions and corresponding single-photon absorption cross sections. Overall agreement is found in the direct, background double photoionization cross section. However, the RMPS method, using a small basis due to practical computational limitations, was unable to reproduce quantitatively the smooth background or the sharper resonance features observed in the measurements, showing instead large-scale oscillations about the experimental background, and characteristic pseudoresonance jitter, associated with an insufficient convergence of the pseudostate representation to the true two-electron infinite series of Feshbach resonances embedded in the two-electron continuum. The prominent resonance structure observed highlights the need to consider multiple excitation processes in atoms more complex than He or quasi-two-electron systems.
Funder
NASA
APRA
US Department of Energy
Division of Chemical Science, Geosciences and Biosciences
U.S. DOE Office of Science User Facility
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献