Revealing incommensurability between device-independent randomness, nonlocality, and entanglement using Hardy and Hardy-type relations

Author:

Sasmal SouradeepORCID,Rai AshutoshORCID,Gangopadhyay SayanORCID,Home Dipankar,Sinha UrbasiORCID

Abstract

Abstract A comprehensive treatment of the quantification of randomness certified device-independently by using the Hardy and Cabello-Liang-Li (CLL) nonlocality relations is provided in the two parties-two measurements per party-two outcomes per measurement (2-2-2) scenario. For the Hardy nonlocality, it is revealed that for a given amount of nonlocality signified by a particular non-zero value of the Hardy parameter, the amount of Hardy-certifiable randomness is not unique, unlike the way the amount of certifiable randomness is related to the CHSH nonlocality. This is because any specified non-maximal value of Hardy nonlocality parameter characterises a set of quantum extremal distributions. Then this leads to a range of certifiable amounts of randomness corresponding to a given Hardy parameter. On the other hand, for a given amount of CLL-nonlocality, the certifiable randomness is unique, similar to that for the CHSH nonlocality. Furthermore, the tightness of our analytical treatment evaluating the respective guaranteed bounds for the Hardy and CLL relations is demonstrated by their exact agreement with the Semi-Definite-Programming based computed bounds. Interestingly, the analytically evaluated maximum achievable bounds of both Hardy and CLL-certified randomness have been found to be realisable for non-maximal values of the Hardy and CLL nonlocality parameters. In particular, we have shown that even close to the maximum 2 bits of CLL-certified randomness can be realised from non-maximally entangled pure two-qubit states corresponding to small values of the CLL nonlocal parameter. This, therefore, clearly illustrates the quantitative incommensurability between randomness, nonlocality and entanglement.

Funder

Ministry of Electronics & Information Technology (MeitY), Government of India under grant for‘Centre for Excellence in Quantum Technologies

Publisher

IOP Publishing

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3