Structural and optical properties of rare earth doped Zn2SnO4 nano-composites prepared via Sol-gel synthesis

Author:

Kadari AhmedORCID,Aissaoui Khaled,El-Mesady Intesar A

Abstract

Abstract Doped with different rare earth elements (Dy3+, Sm3+, Yb2+, Eu3+ and Gd2+), Zn2SnO4 nano-structures were synthesized using sol-gel method. Dopants were introduced in the prepared samples at concentrations 2 mol%. X-Rays Diffraction (XRD) results checked the crystallographic nature of the prepared materials. Using Scherrer’s equation, the particles sizes were calculated and found to be almost 24 nm. The chemical bond types were identified through the Fourier Transform Infrared spectroscopy (FTIR). The dopants effect on the absorbance spectra was explored via the UV-Visible spectroscopy. The energy band gap (E opt) of Zn2SnO4 decreased (from 3.89 eV to 2.80 eV) with dopants addition for direct transitions and was in the range of 3.93 to 2.25 eV for indirect transitions. Similarly, Urbach energies (EU) were found within the range 0.70–0.42 eV. The effect results of the suggested dopants at those concentrations on the structure and optical properties of Zn2SnO4 could be considered to be utilized in the correct form in the industrial applications.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3