Investigation of Ag/ZnO/p-Si heterostructure for diode and photodiode applications in visible spectrum

Author:

Yıldız Dilber EsraORCID,Kocyigit AdemORCID,Yıldırım Murat

Abstract

Abstract Photodiodes have gained great attention for lightning control and optical communication over the last two decades. To obtain faster and more sensitive photodiodes are important for industrial applications. In this study, atomic layer deposition (ALD) technique was used to fabricate ZnO interlayer on p-Si, and thermal evaporation technique was employed to deposit Ag rectifying and Al ohmic contacts on ZnO and back surface of p-Si, respectively. The UV–Vis spectrometer was used to characterize optical behaviors of the ZnO interlayer. I-V measurements were conducted to characterize of Ag/ZnO/p-Si heterostructure for various solar light power intensities of dark, 20, 40, 60, 80 and 100 mW cm−2 and at various wavelengths from 351 nm to 800 nm by 50 nm intervals. According to I-V characteristics, the device exhibited increasing current at reverse biases depending on increasing light power intensity, and this confirmed photodiode behavior. Various diode parameters such as rectifying ratio, threshold voltage, series resistance, barrier height, etc. were determined and discussed in details from forward bias characteristics to investigate diode characteristics of the Ag/ZnO/p-Si heterostructure. The photodetection parameters such as responsivity, specific detectivity and external quantum efficiency (EQE) also were investigated. The Ag/ZnO/p-Si heterostructure exhibits good photodetection performance at all visible range of electromagnetic spectrum and can be good candidate for optoelectronic applications.

Funder

Selçuk University

TUBITAK

Hitit University

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3