Effect of p-MoOx interfacial layer on the photovoltaic performances of p-MoS2/n-Si heterojunction solar cells by theoretical simulation

Author:

Deng QuanrongORCID,Lu Kun,Xiong Liwei,Shen Yonglong,Wang GemingORCID,Wang ShenggaoORCID,Huang Wei

Abstract

Abstract As one of particular 2D transition metal dichalcogenide materials, the outstanding properties of MoS2 enable the promising formation of superior homo or heterojunction solar cells. However, in the process of introducing oxygen treatment to modify the interface defects of MoS2/Si solar cells, or modulate the Fermi level of MoS2 films, a thin layer of p-MoOx capping layer is generally produced next to MoS2. In order to essentially clarify the functional mechanism of MoOx layer, p-MoS2/n-Si heterojunction solar cells with or without MoOx interfacial layer are simulated using SCAPS software. The influences of band gap, electron affinity, thickness of MoS2 and front contact barrier height on the performances of p-MoS2/n-Si solar cells are theoretically studied. It is demonstrated that p-MoS2/n-Si solar cell can achieve a high efficiency of 21.9%. With the appearance of MoOx, the effect of location, electron affinity and thickness of MoOx on the photovoltaic performances p-MoS2/n-Si heterojunction solar cells are studied. The efficiencies of p-MoS2/p-MoOx/n-Si solar cells are significantly reduced to be lower than 11.4%, p-MoOx/p-MoS2/n-Si solar cells maintain superior efficiencies over 20% in a large range of electron affinities lower than 3.0 eV for p-MoOx. Consequently, in modulating the Fermi level of MoS2 films through MoOx doping, p-MoOx capping layer is suggested to be located between MoS2 and front electrode rather than at p-MoS2/n-Si interface, to maintain the excellent performances of p-MoS2/n-Si solar cells.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3