Mechanical properties prediction of ductile iron with spherical graphite using multi-scale finite element model

Author:

Alizadeh Mohammad Hosein,Ajri MasoudORCID,Maleki Vahid ArabORCID

Abstract

Abstract In this paper, using the multi-scale finite element method, the effect of graphite particles on the mechanical behavior of ductile iron has been investigated under tensile loading. For this purpose, taking into account the spherical geometric shape of the graphite phase and considering a specific volume fraction, these spheres are randomly placed in the whole body and a two-component composite material is created. As a next step, a micromechanical model of these materials is developed by defining the mechanical properties of the matrix and graphites as well as their interfaces. The mechanical properties of the matrix are simulated using the Ramberg-Osgood elastic-plastic model. By simulation in ABAQUS software and using nonlinear dynamic analysis, the effects of volume percentages and adhesion of graphite particles with matrix on the direct tensile load-displacement behavior of ductile iron were investigated. The results of experimental tests were used to verify the results of the numerical model. The weight percentage of graphite particles has a significant effect on the tensile strength and elastic modulus of these cast irons. The results show that with the increase in the amount of graphite particles, the tensile strength of cast iron increases up to a certain value and then reverses. With 21% graphite particles, the maximum tensile strength of ductile iron is 601 MPa. Compared with a pure sample of cast iron, the tensile strength increases by approximately 13.4% for this weight percentage of graphite particles.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3