Abstract
Abstract
The excessive intake and inhalation of Triethylamine (TEA), which is an essential ingredient of pharmaceuticals, emulsifiers, dyestuff, soaps, rubber production etc, can cause health hazards such as blue haze, blurry vision, nausea, headache, and faintness; and to prevent the human beings from these hazards, it is crucial to detect TEA level. The present study explores the detection of TEA, using ZnO nanorods and porphyrin coated optical fiber probes. These probes have been synthesized and the topography, composition and morphology of different layers have been confirmed using FESEM, EDX and NMR characterizations. The sensitivity of this hybrid material-based probe has been estimated and was found to be 7-fold to the sensitivity of the metal oxide (ZnO nanorods) based fiber optic probe. The selectivity study has also been performed and it was observed that the analyte TEA has highest response (83.495 nm shift in peak wavelength) compared to other analytes such as the ethanol. This hybrid material-based fiber-optic probe offers the better selectivity and sensitivity for TEA and provides a very quick response time.