Study on creep mechanical properties of carbonaceous shale under dry-wet cycle

Author:

Wei ErjianORCID,Hu Bin,Li Jing,Zhang Zhen,Ma Liyao,Wang Zeqi

Abstract

Abstract The creep mechanical properties of rock under dry-wet cycles are of great significance for studying the long-term aging stability of engineering rock and soil. In the past, there were few studies in this area, and most of the dry-wet cycle tests on rock samples did not conform to the actual stress state of the rock. In view of the shortcomings of these studies, this paper innovatively carried out the dry-wet cycle test of the rock under the continuous state of the stress field, and studied its mechanical properties. The specific method is to take carbonaceous shale as the research object, and use the soft rock shear rheological test system independently developed by our research group to carry out the shear creep test of carbonaceous shale under the action of dry-wet cycle. The test results show that the creep full-time curves of carbonaceous shale under different dry-wet cycles show a step-shaped curve shape. The dry-wet cycle has a significant effect on the deformation characteristics of carbonaceous shale. With the increase of the number of dry-wet cycles, the instantaneous strain of the rock gradually increases, the instantaneous shear modulus decreases from 596.650 MPa at 0 times to 365.199 MPa at 12 times, and the attenuation rate reaches 38.79%. The creep strain and cumulative creep strain become larger, the stress required for accelerated creep decreases from 3.29 MPa to 2.75 MPa, and the accelerated creep time in the third stage increases from 11.892 h to 5.316 h, and the creep effect is more significant. The long-term strength of carbonaceous shale decreases from 3.05 MPa to 2.49 MPa, and the decrease increases with the increase of dry-wet cycles. The more the number of dry-wet cycles, the smaller the undulation of the shear failure section of the carbonaceous shale, and the smoother the surface. The research results have important guiding significance for the long-term aging stability analysis of engineering rock and soil mass subjected to repeated dry-wet cycles.

Funder

National Natural Science Foundation of China

the Major Science and Technology Projects of WUST Cultivate Innovation Teams

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference60 articles.

1. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel;Inoue;Geomorphology,2017

2. Experimental characterization of a water/rock thermocline cold thermal energy storage for optimization of condenser cooling;Bruch;Journal of Energy Storage,2021

3. Experimental investigation on the mechanical behavior and damage evolution mechanism of water-immersed gypsum rock;Ma;Rock Mech. Rock Eng.,2021

4. A review of underground hydrogen storage in depleted gas reservoirs: Insights into various rock-fluid interaction mechanisms and their impact on the process integrity;Perera;Fuel,2022

5. Deterioration law of intermittent jointed sandstone mechanical properties under water-rock interaction;Chen;Acta Geophys.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3